ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. Le Tellier, A. Hébert
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 121-138
Technical Paper | doi.org/10.13182/NSE07-A2691
Articles are hosted by Taylor and Francis Online.
A detailed derivation of the algebraic collapsing acceleration (ACA), a synthetic acceleration of the characteristics method, is presented. An improvement of the synthetic hypothesis is proposed, and the corrective system is derived for general boundary conditions. Both Fourier and direct spectral analyses of the accelerated iterations for a one-dimensional slab geometry are given. The solving strategy for the corrective system along with implementation details about the method of characteristics is discussed. Numerical results for a one-group, two-dimensional benchmark are provided to illustrate the basic synthetic hypothesis and the enhancement of its robustness with the proposed two-step collapsing hypothesis. The practical performance of ACA is illustrated on a pressurized water reactor-type assembly in the context of multigroup eigenvalue calculations.