ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. Le Tellier, A. Hébert
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 121-138
Technical Paper | doi.org/10.13182/NSE07-A2691
Articles are hosted by Taylor and Francis Online.
A detailed derivation of the algebraic collapsing acceleration (ACA), a synthetic acceleration of the characteristics method, is presented. An improvement of the synthetic hypothesis is proposed, and the corrective system is derived for general boundary conditions. Both Fourier and direct spectral analyses of the accelerated iterations for a one-dimensional slab geometry are given. The solving strategy for the corrective system along with implementation details about the method of characteristics is discussed. Numerical results for a one-group, two-dimensional benchmark are provided to illustrate the basic synthetic hypothesis and the enhancement of its robustness with the proposed two-step collapsing hypothesis. The practical performance of ACA is illustrated on a pressurized water reactor-type assembly in the context of multigroup eigenvalue calculations.