ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Guohui Zhang, Rongtai Cao, Jinxiang Chen, Guoyou Tang, Yu. M. Gledenov, M. Sedysheva, G. Khuukhenkhuu
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 115-119
Technical Paper | doi.org/10.13182/NSE07-A2690
Articles are hosted by Taylor and Francis Online.
Differential cross sections of the 64Zn(n,)61Ni reaction were measured at neutron energies of 5.03 and 5.95 MeV by using a gridded ionization chamber. The experiment was performed at the 4.5-MV Van de Graaff accelerator of the Institute of Heavy Ion Physics, Peking University. Neutrons were produced through the D(d,n)3He reaction with a deuterium gas target. The absolute neutron flux was determined by the 238U(n,f) reaction and a calibrated BF3 long counter. Present results are compared with existing data.