ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Samuel L. Gralnick
Nuclear Science and Engineering | Volume 60 | Number 3 | July 1976 | Pages 302-310
Technical Paper | doi.org/10.13182/NSE76-A26886
Articles are hosted by Taylor and Francis Online.
This paper presents a derivation of the conservation-law form of the single energy group transport equation in an axisymmetric toroidal coordinate system formed by rotating a nest of smooth, simply closed, plane curves of arbitrary parametric description about an axis that does not intersect the nest. This general equation can be used for generating equations specific to particular cross-section geometries or as the basis of a finite difference equation for the general case. The effect of both the toroidal and poloidal curvatures of the system are investigated, and criteria for the validity of cylindrical and planar approximations are established. The diffusion equation for this geometry is derived, and it is shown to be formally homologous to the “r-θ” cylindrical diffusion equation if the coordinate system is orthogonal and if the azimuthal coordinate, , can be ignored.