ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dong H. Nguyen, David Salinas
Nuclear Science and Engineering | Volume 60 | Number 2 | June 1976 | Pages 120-130
Technical Paper | doi.org/10.13182/NSE76-A26868
Articles are hosted by Taylor and Francis Online.
The finite element method was used to solve a nonlinear two-dimensional reactor dynamics equation. The system considered is a superprompt critical fast reactor, subjected to the prompt feedback condition. Various nonuniform initial disturbances allow the examination of the spatial dependence of neutron dynamics. Under exact numerical treatment, the quadratic nonlinearity in the dynamics equation transforms into an N × N2 matrix operator, where N is the system degree of freedom. This large matrix size taxes heavily on computer time and storage. The results obtained here can be considered as a numerical standard. It is found that there is a strong spatial dependence during the early phase of the transient, and that this dependence increases with increasing discontinuity in initial conditions. The transient behavior at each point in space also depends strongly on the spatial distribution and magnitude of the initial disturbances.