ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. A. Kushneriuk, J. M. Blair
Nuclear Science and Engineering | Volume 60 | Number 1 | May 1976 | Pages 87-95
Technical Note | doi.org/10.13182/NSE76-A26860
Articles are hosted by Taylor and Francis Online.
Some solutions of the differential equations, which describe an elementary model of the disposition of material carried by a fluid flowing in a pipe, are derived and investigated. The solutions pertain to a variety of assumptions made regarding the initial concentrations of the material in the fluid within the pipe and on the pipe interior surface, and the concentration of the material in the fluid entering the pipe. The means of obtaining some of the model parameters using the derived solutions and measured values of the concentrations of matter on the pipe surface and in the fluid are illustrated.