ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
L. F. Hansen, C. Wong, T. Komoto, J. D. Anderson
Nuclear Science and Engineering | Volume 60 | Number 1 | May 1976 | Pages 27-35
Technical Paper | doi.org/10.13182/NSE76-A26854
Articles are hosted by Taylor and Francis Online.
Proposed fusion reactor blanket designs bring into focus a large number of problems dealing with the interaction of 14-MeV neutrons with different materials. Carbon, oxygen, aluminum, titanium, and iron are among the materials used in the blanket. To have confidence in fusion reactor blanket calculations, a necessary prerequisite is that the transport code correctly describes the interaction of 14-MeV neutrons with the materials of the blanket. Spherical assemblies of the above materials ranging from 1 to 5 mean-free-paths in thickness have been bombarded with a centered nominal 14-MeV neutron source. The emitted neutron energy spectra were measured using time-of-flight techniques (3-nsec full-width-at-half-maximum system resolution) in a geometry where the flight path (7 to 10 m) is long compared to the dimensions of the spherical targets. The spectra have been calculated with the Monte Carlo neutron transport code TART using the ENDF/B-III and -IV neutron libraries and compared with measurements.