ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. F. Hansen, C. Wong, T. Komoto, J. D. Anderson
Nuclear Science and Engineering | Volume 60 | Number 1 | May 1976 | Pages 27-35
Technical Paper | doi.org/10.13182/NSE76-A26854
Articles are hosted by Taylor and Francis Online.
Proposed fusion reactor blanket designs bring into focus a large number of problems dealing with the interaction of 14-MeV neutrons with different materials. Carbon, oxygen, aluminum, titanium, and iron are among the materials used in the blanket. To have confidence in fusion reactor blanket calculations, a necessary prerequisite is that the transport code correctly describes the interaction of 14-MeV neutrons with the materials of the blanket. Spherical assemblies of the above materials ranging from 1 to 5 mean-free-paths in thickness have been bombarded with a centered nominal 14-MeV neutron source. The emitted neutron energy spectra were measured using time-of-flight techniques (3-nsec full-width-at-half-maximum system resolution) in a geometry where the flight path (7 to 10 m) is long compared to the dimensions of the spherical targets. The spectra have been calculated with the Monte Carlo neutron transport code TART using the ENDF/B-III and -IV neutron libraries and compared with measurements.