ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Caner, M. Segev, S. Yiftah
Nuclear Science and Engineering | Volume 59 | Number 4 | April 1976 | Pages 395-405
Technical Paper | doi.org/10.13182/NSE76-A26840
Articles are hosted by Taylor and Francis Online.
A consistent compound nucleus theory of (n, 2n) and (n, 3n) neutron emission was applied to 238U to obtain the energy spectra of the second and third secondary neutrons. The evaluation was based on inelastic level excitation and evaporation data for 238U, 237U, and 236U. The 238U and 236U data were retrieved from ENDF/B-IV files; the 237U data were evaluated in the Soreq Nuclear Research Center using experimental information and statistical reaction theory codes. At reaction energies E0 just above the (n, 2n) threshold energy B2, the energy E of the second inelastic neutron has a spectrum of (E0 - B2 - E); above the (n, 3n) threshold, B3, the third neutron energy has a spectrum of (E0 - B2 - E)3. At energies E0, high above the thresholds, the second and third neutron spectra approach the evaporation form. A secondary neutron spectrum for any given reaction energy E0 is approximated by a composite form where i = 2, 3 for the second and third neutrons, respectively. The temperatures Ti and blending coefficients βi were evaluated for several energies in the range from threshold up to 15 MeV.