ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
M. Caner, M. Segev, S. Yiftah
Nuclear Science and Engineering | Volume 59 | Number 4 | April 1976 | Pages 395-405
Technical Paper | doi.org/10.13182/NSE76-A26840
Articles are hosted by Taylor and Francis Online.
A consistent compound nucleus theory of (n, 2n) and (n, 3n) neutron emission was applied to 238U to obtain the energy spectra of the second and third secondary neutrons. The evaluation was based on inelastic level excitation and evaporation data for 238U, 237U, and 236U. The 238U and 236U data were retrieved from ENDF/B-IV files; the 237U data were evaluated in the Soreq Nuclear Research Center using experimental information and statistical reaction theory codes. At reaction energies E0 just above the (n, 2n) threshold energy B2, the energy E of the second inelastic neutron has a spectrum of (E0 - B2 - E); above the (n, 3n) threshold, B3, the third neutron energy has a spectrum of (E0 - B2 - E)3. At energies E0, high above the thresholds, the second and third neutron spectra approach the evaporation form. A secondary neutron spectrum for any given reaction energy E0 is approximated by a composite form where i = 2, 3 for the second and third neutrons, respectively. The temperatures Ti and blending coefficients βi were evaluated for several energies in the range from threshold up to 15 MeV.