ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Ziya Akcasu, Noel Corngold
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 55-67
Technical Paper | doi.org/10.13182/NSE07-A2684
Articles are hosted by Taylor and Francis Online.
Various smoothing procedures in stochastic transport leading to deterministic equations for the mean flux and its variance are presented, and the connections between them are discussed. Particular attention is paid to Volterra's functional calculus, which generates an algorithm, referred to as functional derivative algorithm (FDA), that produces deterministic equations describing the effects of stochasticity. These equations, which describe the effects of stochasticity to leading order, involve only the two-point correlation function of the spatial fluctuations. The utility of FDA is demonstrated by treating particular models of transport in unbounded media, and its general features are discussed in steady-state stochastic transport with suggestions for numerical solutions.