ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. L. Dodds, Jr.
Nuclear Science and Engineering | Volume 59 | Number 3 | March 1976 | Pages 271-276
Technical Note | doi.org/10.13182/NSE76-A26825
Articles are hosted by Taylor and Francis Online.
The quasistatic method was compared with a direct finite difference method of solving two-dimensional thermal reactor transient problems with thermal-hydraulic feedback. Calculations using both methods were performed for a cylindrical (r-z), D2O-moderated and -cooled uranium-fueled reactor. This study shows that the quasistatic method is capable of producing highly accurate results, relative to the direct finite difference method, for two-dimensional thermal reactor transients with feedback. The quasistatic method also offers the flexibility of using larger time steps between flux shape calculations, without encountering numerical problems, than the direct method. The quasistatic and direct method codes used in this work are comparable with respect to accuracy and computing costs for the subprompt critical transients considered in this work except for transients with weak spatial effects. For such transients, much larger time steps can be used in the quasistatic code than in the direct method code to achieve a specified accuracy, which, in turn, provides a considerable savings in computing costs.