ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
R. C. Lloyd, E. D. Clayton
Nuclear Science and Engineering | Volume 59 | Number 1 | January 1976 | Pages 21-26
Technical Paper | doi.org/10.13182/NSE76-A26805
Articles are hosted by Taylor and Francis Online.
Critical-experiment data are presented on a heterogeneous lattice of fuel rods comprised of uranium and plutonium oxides, clad with stainless steel, and moderated with (U + Pu) nitrate solution, a condition not unlike that encountered in a fuel-element dissolver operation. The effect of a soluble neutron absorber (gadolinium nitrate) on the criticality of this type of system was also examined for its possible use as a method of criticality prevention and control during the dissolution step. The results provide data for code validation, an essential requirement on complex systems such as this, if the calculations are to be utilized to prescribe subsequent control limits under similar or related conditions in fuel processing. Experiments indicate (for the very limited data presented) that a heterogeneous system composed of these fuel rods in water can have a larger buckling than the fuel in the dissolved state. The question is, whether a fuel rod of a size different from that used in these experiments, immersed in fissile-bearing solutions, might have a still higher buckling (and smaller critical size) than the highest achievable buckling for fuel rods of optimum diameter and spacing in water. This important consideration regarding the criticality safety aspects of dissolvers must be examined in each case. The results of calculations of these systems with the KENO Monte Carlo code utilizing ENDF/B-III cross sections are presented.