ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. C. Lloyd, E. D. Clayton
Nuclear Science and Engineering | Volume 59 | Number 1 | January 1976 | Pages 21-26
Technical Paper | doi.org/10.13182/NSE76-A26805
Articles are hosted by Taylor and Francis Online.
Critical-experiment data are presented on a heterogeneous lattice of fuel rods comprised of uranium and plutonium oxides, clad with stainless steel, and moderated with (U + Pu) nitrate solution, a condition not unlike that encountered in a fuel-element dissolver operation. The effect of a soluble neutron absorber (gadolinium nitrate) on the criticality of this type of system was also examined for its possible use as a method of criticality prevention and control during the dissolution step. The results provide data for code validation, an essential requirement on complex systems such as this, if the calculations are to be utilized to prescribe subsequent control limits under similar or related conditions in fuel processing. Experiments indicate (for the very limited data presented) that a heterogeneous system composed of these fuel rods in water can have a larger buckling than the fuel in the dissolved state. The question is, whether a fuel rod of a size different from that used in these experiments, immersed in fissile-bearing solutions, might have a still higher buckling (and smaller critical size) than the highest achievable buckling for fuel rods of optimum diameter and spacing in water. This important consideration regarding the criticality safety aspects of dissolvers must be examined in each case. The results of calculations of these systems with the KENO Monte Carlo code utilizing ENDF/B-III cross sections are presented.