ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. Ilberg, D. Saphier, S. Yiftah
Nuclear Science and Engineering | Volume 58 | Number 4 | December 1975 | Pages 445-449
Technical Note | doi.org/10.13182/NSE75-A26800
Articles are hosted by Taylor and Francis Online.
The extent to which the use of different fission-product cross sections (FPCS) affects the neutron multiplication factor keff in high burnup cores of fast reactors is evaluated. It is found that discrepancies of the order of 2.5% exist when different FPCS are used to calculate keff in the same core. These discrepancies are due to the absence of data on a number of fission-product isotopes present in some of the nuclear data libraries on the one hand, and large differences in the capture cross sections of some of the isotopes on the other. A list of fission-product isotopes is proposed that, when used, reduces discrepancies in keff to < 1%. The important isotopes for fast-reactor burnup and keff calculations in which large discrepancies exist are identified, and it is suggested that they be subjected to further evaluation to close the discrepancy gap.