ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. K. Dickens
Nuclear Science and Engineering | Volume 58 | Number 3 | November 1975 | Pages 331-338
Technical Note | doi.org/10.13182/NSE75-A26783
Articles are hosted by Taylor and Francis Online.
Interactions of neutrons with zinc have been studied by measuring gainma-ray-production cross sections. For a sample of natural zinc, spectra were obtained for incident-mean-neutron energies, En = 4.9, 5.4, and 5.9 MeV with gamma-ray detector systems utilizing coaxial Ge(Li) detectors. Nearly monoenergetic neutrons were obtained from the D(d, n) reaction using deuterons obtained from the (pulsed) Oak Ridge National Laboratory 5-MV Van de Graaff accelerator. Time-of-flight was used to discriminate against pulses due to neutrons and background radiation. Gamma-ray identification was aided by obtaining spectra for samples enriched in the isotopes 64Zn and 68Zn, and new information on the level structure of 64Zn is reported. These cross sections have been compared, where possible, with previous comparable measurements with generally satisfactory results.