ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. Paviotti Corcuera
Nuclear Science and Engineering | Volume 58 | Number 3 | November 1975 | Pages 278-290
Technical Paper | doi.org/10.13182/NSE75-A26777
Articles are hosted by Taylor and Francis Online.
Systematic discrepancies between experimental and calculated neutron spectra in different fast-neutron media with high 238U content were observed, allowing the uncertainties in certain 238U neutron cross sections to be considered as the source of such discrepancies. Sensitivity studies, as well as the effect of the former uncertainties on such fast-neutron spectra showed that 238U (n, n′) inelastic scattering is by far the main parameter determining the spectrum over a large energy range. Uranium-238 (n, γ) neutron capture is important only at low energies, below the 238U (n, n′) threshold. The (n,γn′) reaction in 238U using Fricke's data leads to an increase in the discrepancies in neutron spectra though this cross section could be considered negligible according to other arguments. A general least-squares adjustment of the 238U total inelastic cross sections, on the neutron spectrum discrepancies, was carried out between 70 keV and 3.6 MeV, using two different inelastic probability matrices (those of ENDF/B-III and UKNDL-DFN 401), which were chosen among several evaluations of this reaction. The adjusted cross sections obtained in an energy mesh corresponding to lethargy intervals of 0.5 imply a systematic reduction of 20 to 30% relative to the initial values in both files, but they appear to be in good agreement with other recent (coarse-mesh) adjusted data, including the KFK-INR set.