ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. N. Cramer, E. M. Oblow
Nuclear Science and Engineering | Volume 58 | Number 1 | September 1975 | Pages 33-53
Technical Paper | doi.org/10.13182/NSE75-A26765
Articles are hosted by Taylor and Francis Online.
The results of two integral experiments on carbon, performed at the Oak Ridge National Laboratory (ORNL) and at Intelcom Radiation Technology were compared with Monte Carlo calculations to test evaluated carbon neutron and gamma-ray production data sets. In both experiments NE-213 detectors were used to measure the angular dependence of neutron scattering and gamma-ray production from thick (1-mfp) carbon samples in the energy range from 0.5 to 20 MeV. Additional measurements from the ORNL experiment also provided angular-dependent energy distributions of the scattered neutrons. Multigroup Monte Carlo calculations modeling the two experimental arrangements were made to compare with the measured data. Both ENDF/B-III and ENDF/B-IV carbon data were used in the computations. The results indicate that such experiments are adequate for testing processed neutron scattering and gamma-ray production data (both integral and double differential) to within 10 to 20% over a wide range of incident neutron energies (1 to 15 MeV). Also, on the whole, calculations with the carbon ENDF/B-IV data compared favorably with the measured results over the energy range, tested. The only notable exceptions were the disagreements in the neutron result comparisons above 9 MeV, which were attributed for the most part to errors in the evaluated C(n, n’)3α and elastic angular distribution cross sections in this range.