ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
L. L. Briggs, W. F. Miller, Jr., E. E. Lewis
Nuclear Science and Engineering | Volume 57 | Number 3 | July 1975 | Pages 205-217
Technical Paper | doi.org/10.13182/NSE75-A26752
Articles are hosted by Taylor and Francis Online.
A generalization is made of a previous phase-space finite element approximation of the second-order form of the one-group, two-dimensional neutron transport equation in x-y geometry. Three angular approximations are formulated and compared: continuous piecewise bilinear finite element, piecewise constant finite element, and discrete ordinate. These are incorporated into a unified formalism of discrete ordinate-like equations, enabling the spatial variables to be treated identically using piecewise linear or bilinear finite elements. The resulting equations are solved iteratively by a weighted conjugate gradient method in an improved version of the computer code FENT. Numerical and analytical comparisons of the angular approximations are made, and it is found that both piecewise bilinear and piecewise constant approximations in angle substantially mitigate ray effects. The mitigation is shown to be associated closely with transformation of the hyperbolic discrete ordinate equations to the elliptic operators of the discrete ordinatelike finite element approximations. This transformation is accompanied by the disappearance of the characteristics along the discrete lines of neutron travel, and, hence, by the appearance of physically artificial derivative terms normal to the lines of neutron streaming. These terms grow with the subdomains of the angular finite elements.