ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. T. Mihalczo
Nuclear Science and Engineering | Volume 56 | Number 3 | March 1975 | Pages 271-290
Technical Paper | doi.org/10.13182/NSE75-3
Articles are hosted by Taylor and Francis Online.
The spatial distribution of the neutron importance in bare and natural-uranium-reflected uranium (∼93.2 wt% 235U) and plutonium (∼4.7 at % 240Pu) metal spheres was measured using 252Cf neutron sources. The spatial distribution of the fission density from activation measurements in the bare spheres and those previously measured for the reflected spheres are presented.Comparison of these distributions with those from S16 transport theory calculations showed that the measured and calculated results agreed very well for the bare spheres and in the central core of the reflected spheres. The disagreement in the natural uranium reflector increased with radius and attained values as large as ∼35% at the outer surface. The sensitivity of the calculations to the cross sections is examined.These measurements were undertaken to properly account for spatial effects in the point reactor kinetics description of Rossi-α measurements. The spatial-effects factors obtained from these measurements, which multiply the correlated amplitude of the Rossi-α measurement, were 1.123, 1.109, 1.163, and 1.214 for the bare uranium, bare plutonium, reflected uranium, and reflected plutonium spheres, respectively. The error in these values is ± 0.010.