ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 56 | Number 3 | March 1975 | Pages 271-290
Technical Paper | doi.org/10.13182/NSE75-3
Articles are hosted by Taylor and Francis Online.
The spatial distribution of the neutron importance in bare and natural-uranium-reflected uranium (∼93.2 wt% 235U) and plutonium (∼4.7 at % 240Pu) metal spheres was measured using 252Cf neutron sources. The spatial distribution of the fission density from activation measurements in the bare spheres and those previously measured for the reflected spheres are presented.Comparison of these distributions with those from S16 transport theory calculations showed that the measured and calculated results agreed very well for the bare spheres and in the central core of the reflected spheres. The disagreement in the natural uranium reflector increased with radius and attained values as large as ∼35% at the outer surface. The sensitivity of the calculations to the cross sections is examined.These measurements were undertaken to properly account for spatial effects in the point reactor kinetics description of Rossi-α measurements. The spatial-effects factors obtained from these measurements, which multiply the correlated amplitude of the Rossi-α measurement, were 1.123, 1.109, 1.163, and 1.214 for the bare uranium, bare plutonium, reflected uranium, and reflected plutonium spheres, respectively. The error in these values is ± 0.010.