ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael Stamatelatos, Bo Lawergren, Leon J. Lidofsky
Nuclear Science and Engineering | Volume 51 | Number 2 | June 1973 | Pages 113-118
Technical Paper | doi.org/10.13182/NSE73-A26586
Articles are hosted by Taylor and Francis Online.
High energy gamma-ray spectra from the radiative capture of 14-MeV neutrons in copper, zirconium, and antimony have been measured with a coincidence-anticoincidence telescope pair spectrometer. These spectra are compared with predictions from calculations using the semidirect (collective) capture model. The parameter values used were derived from other types of experiments and from nuclear models. Agreement is found both in shape and in magnitude without further adjustment of parameters. Partial radiative capture cross sections, obtained by integrating the gamma-ray spectra for gamma energies in excess of 14 MeV, are compared with values from other measurements.