ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
P. A. Ombrellaro, F. D. Federighi
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 343-356
Technical Paper | doi.org/10.13182/NSE63-A26544
Articles are hosted by Taylor and Francis Online.
A variational procedure for calculating fast energy few group constants is described. For a given medium, the method permits one to express the flux and current solutions of the Boltzmann equation, treated according to P − 1 slowing down theory in each group of a few group scheme, as a linear combination of base flux spectra to obtain the group flux and as a linear combination of base current spectra to obtain the group current. The coefficients for combining the base spectra are provided by the theory and depend only on the concentrations of the component elements of the medium. Once the flux and current spectra in each group are calculated, the group constants for the medium can be easily calculated from base flux spectra weighted library microscopic cross sections. Group constants calculated in this manner agree well with those obtained from the MUFT V program.