ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Sauer
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 329-335
Technical Paper | doi.org/10.13182/NSE16-03-329
Articles are hosted by Taylor and Francis Online.
The rational approximation to the escape probability is generalized to contain a geometry dependent parameter. In this way, approximate expressions that are both simple and remarkably accurate are obtained for the escape probability from solid and hollow fuel rods, and for the Dancoff correction in regular rod lattices. These approximations are derived from suitably chosen one-parametric chord distribution functions that have the same general character as the exact chord distributions of the fuel and moderator regions. It is shown that it is reasonable to determine the parameter belonging to each geometry—the geometric index—from the condition that the logarithmic moment of the exact and the approximate chord distribution functions be equal. The geometric indices are given for solid and hollow fuel rods, and for square and hexagonal lattice configurations. For solid or hollow fuel rods the error in the approximation is less than 1 %. The Dancoff correction for rod lattices is obtained with comparable accuracy.