ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. M. Berman
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 315-328
Technical Paper | doi.org/10.13182/NSE63-A26534
Articles are hosted by Taylor and Francis Online.
Four irradiated UO2 samples were ground to break them along grain boundaries, then dissolved in a series of successive leaches with 3N HNO3. The successive acid extractions were then analyzed for Cs138, Ce144, Zr95, Sr90, and Eu155, as well as total uranium. Very considerable variation in the specific activities of the fission fragments was found between one acid extraction and another of the same sample. The fission products were concentrated in the first and last portions of the material to dissolve. In one sample, which underwent irradiation for a very short time, the increase in concentration in the last portion to dissolve was not observed. It is speculated, on this and other evidence, that fission fragments do not remain in solid solution in uranium dioxide, but instead migrate to grain boundaries and other lattice defect sites.