ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Troy L. Becker, Allan B. Wollaber, Edward W. Larsen
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 155-167
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2653
Articles are hosted by Taylor and Francis Online.
A new hybrid Monte Carlo-Deterministic technique is presented for simulating global particle transport problems, in which flux estimates are desired at all physical locations in the system. This technique has two steps: First, an inexpensive deterministic global estimate of the forward flux is obtained; then Monte Carlo is used to estimate the multiplicative correction to the deterministic flux estimate. We call the multiplicative correction to the deterministic flux the correcton flux, and the Monte Carlo particles that estimate this flux correctons. For deep-penetration problems, the correcton flux has significantly less spatial variation than the physical flux. Therefore, the Monte Carlo process automatically distributes correctons much more uniformly across the system than it distributes Monte Carlo particles for the original angular flux. In the "deep" parts of the problem, at locations far from the source, this results in a greatly reduced variance and a greatly increased figure of merit.