ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Edward Garelis, John L. Russell, Jr.
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 263-270
Technical Paper | doi.org/10.13182/NSE63-A26529
Articles are hosted by Taylor and Francis Online.
A new method of utilizing pulsed neutron source measurements for the determination of the subcriticality of an assembly directly in terms of dollars is proposed. Essentially, the method determines the parameter (kβ/l) using the complete response curve of a repetitively pulsed assembly after the quasi-equilibrium state has been attained. This value of (kβ/l) coupled with the usual α-measurement, assuming the prompt decay constant to be dominant, yields the reactivity directly. The analytical model is based on a bare one-group diffusion theory system with m-delayed precursors. The application of these results to experiment shows that their applicability is much broader than the simple analytical model would indicate.