ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Edward Garelis, John L. Russell, Jr.
Nuclear Science and Engineering | Volume 16 | Number 3 | July 1963 | Pages 263-270
Technical Paper | doi.org/10.13182/NSE63-A26529
Articles are hosted by Taylor and Francis Online.
A new method of utilizing pulsed neutron source measurements for the determination of the subcriticality of an assembly directly in terms of dollars is proposed. Essentially, the method determines the parameter (kβ/l) using the complete response curve of a repetitively pulsed assembly after the quasi-equilibrium state has been attained. This value of (kβ/l) coupled with the usual α-measurement, assuming the prompt decay constant to be dominant, yields the reactivity directly. The analytical model is based on a bare one-group diffusion theory system with m-delayed precursors. The application of these results to experiment shows that their applicability is much broader than the simple analytical model would indicate.