ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. W. Hinman, G. F. Kuncir, J. B. Sampson, G. B. West
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 202-207
Technical Paper | doi.org/10.13182/NSE63-A26500
Articles are hosted by Taylor and Francis Online.
A method for determining Doppler broadening which is rigorous for a Maxwellian gas of resonance absorber atoms has been reduced to computation. Doppler broadened absorption cross sections for low-lying resonances of Er167 and Xe135 have been computed both by this more accurate method and by the ψ-function approximation which is in general use. The more accurate method was found to give a correction, compared with the ψ-function method, which was several percent in the case of Xe135 and was less than 1 % for Er167. The time required for the more accurate computation was found to be short enough to be practical for those special applications wehere it is of interest.