ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
D. T. Goldman, F. D. Federighi
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 165-175
Technical Paper | doi.org/10.13182/NSE63-A26496
Articles are hosted by Taylor and Francis Online.
A model is proposed for calculating the scattering of thermal energy neutrons by polyethylene. It is seen that a reasonable fit to the experimental total cross section results. This model is then used to calculate infinite medium spectra and the results compared with calculations using water and perfect gas scattering kernels, with a harder predicted spectrum apparent. The results are compared with experimental data for two amounts of absorption, and agreement between experiment and theory using an appropriate scattering model is observed. The model is then used to calculate reactor quantities for a particular one-dimensional finite lattice. The sensitivity of the flux spectra and criticality to the choice of scattering kernel is presented. The former quantity is more sensitively dependent than the latter.