ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Lawrence R. Steele, Sheffield Gordon, Charles E. Dryden
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 458-467
Technical Paper | doi.org/10.13182/NSE63-A26463
Articles are hosted by Taylor and Francis Online.
Measurements of the rate of decomposition of water as a function of particle size and concentration of a slurry of fissionable and fertile fuel were made on 10 cc samples of slurry, kept in suspension by a mechanical stirrer, in a nuclear reactor. By passing nitrogen through the slurry during the irradiation, the radiolytic gases were stripped from the slurry before they could recombine. The average particle size of the solids, which contained 10% natural uranium, was varied from 6 to 50 μ in diameter. Concentrations between 300 and 1000 gm/liter were studied. In order to correlate the experimental results, use was made of calculations of the fraction of fission recoil energy that escapes to the fluid in a slurry reactor. The results indicate that the value of G(H2)f, the number of hydrogen molecules measured for every 100 ev of fission recoil energy absorbed by the water is about 2.1. This is also the value for G(—H2O)f , the number of molecules of water decomposed by every 100 ev of fission recoil energy under steady-state conditions in a slurry reactor.