ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Lawrence R. Steele, Sheffield Gordon, Charles E. Dryden
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 458-467
Technical Paper | doi.org/10.13182/NSE63-A26463
Articles are hosted by Taylor and Francis Online.
Measurements of the rate of decomposition of water as a function of particle size and concentration of a slurry of fissionable and fertile fuel were made on 10 cc samples of slurry, kept in suspension by a mechanical stirrer, in a nuclear reactor. By passing nitrogen through the slurry during the irradiation, the radiolytic gases were stripped from the slurry before they could recombine. The average particle size of the solids, which contained 10% natural uranium, was varied from 6 to 50 μ in diameter. Concentrations between 300 and 1000 gm/liter were studied. In order to correlate the experimental results, use was made of calculations of the fraction of fission recoil energy that escapes to the fluid in a slurry reactor. The results indicate that the value of G(H2)f, the number of hydrogen molecules measured for every 100 ev of fission recoil energy absorbed by the water is about 2.1. This is also the value for G(—H2O)f , the number of molecules of water decomposed by every 100 ev of fission recoil energy under steady-state conditions in a slurry reactor.