ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. Leibowitz, L. Baker, Jr., J. G. Schnizlein, L. W. Mishler, J. D. Bingle
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 395-403
Technical Paper | doi.org/10.13182/NSE63-A26456
Articles are hosted by Taylor and Francis Online.
Measurements have been made of the maximum burning temperatures and the propagation velocities along strips of uranium and zirconium foils and wires burning in air. Measurements were made using either a high-speed motion picture camera or a specially constructed two-slit electronic pyrometer. Burning temperatures and propagation velocities were measured as a funcion of both sample width and sample thickness. It was found that burning propagation velocities could be reasonably well described by a thermal propagation theory similar to one applied to flame propagation in gases. Variation of propagation rates with thickness and width of foil were correctly described by the theory. The results of the study are applicable to the combustion of isolated pieces of uranium and zirconium scrap but not directly to the more complicated case of the combustion of large aggregates. Some of the additional factors involved in large aggregate fires are discussed.