ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Robert C. Axtmann, John, Bridgwater
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 81-89
Technical Paper | doi.org/10.13182/NSE63-A26266
Articles are hosted by Taylor and Francis Online.
Fast neutrons deposit energy in chemical systems by means of elastic scattering, inelastic scattering, and various charged particle reactions. For the particular case of 14.6 Mev neutrons and 1:1 solutions of liquid N2 and O2, the proportions by which the three classes of reactions contribute are, respectively, about 1:1:4. The initial linear energy transfer (ILET) in the same system is of the order of 20 ev/Å. Dosimetry in fast neutron radiation chemistry experiments may combine a quantitative consideration of each nuclear reaction with a measurement of the neutron flux. This method of dosimetry has been applied to experiments on the production of NO2 in 1:1 liquid N2 and O2 with the result that GNO2, the number of NO2 molecules formed per 100 ev deposited in the sample, was found equal to 0.5 ±0.1. This result is surprisingly close to that observed for irradiations by Co50 gamma rays and by electrons whose ILET is three orders of magnitude less than that for 14.6 Mev neutrons.