ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. L. Montet
Nuclear Science and Engineering | Volume 15 | Number 1 | January 1963 | Pages 69-80
Technical Paper | doi.org/10.13182/NSE63-A26265
Articles are hosted by Taylor and Francis Online.
The electrical resistances and Hall coefficients of polycrystalline graphite, neutron irradiated graphite, chemically doped graphite, and neutron irradiated chemically doped graphite have been measured over a range of magnetic fields at liquid nitrogen and liquid helium temperatures. The empirical equivalence of acceptor concentrations in irradiated graphite and in chemically doped graphite obtained by matching Hall coefficients has been found to be a function of the temperature of measurement. This observation may be explained in terms of temperature dependent trapping efficiencies of the electron traps introduced chemically or by neutron irradiation. This explanation affords some understanding of the electrical properties of the complicated neutron irradiated chemically doped graphite. The temperature variation of the resistances and Hall coefficients of the graphites studied may be reasonably well understood on the basis of the phenomenological theory of transport properties. Anomalous variations with magnetic field of resistances and Hall coefficients were observed at low temperature in some of the graphites studied; no satisfactory explanation has been found for these effects, although a recently introduced theory provides a plausible explanation for the observed magnetoresistance of polycrystalline graphite at liquid helium temperature.