ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. K. Lane, L. W. Nordheim, J. B. Sampson
Nuclear Science and Engineering | Volume 14 | Number 4 | December 1962 | Pages 390-396
Technical Paper | doi.org/10.13182/NSE62-A26247
Articles are hosted by Taylor and Francis Online.
The problem of resonance absorption is investigated for materials in which the absorber is lumped in small grains imbedded in a matrix of moderator. The point of departure is to take the grains themselves as the fundamental elements in heterogeneous geometry. It is important to treat correctly the mutual shielding between the grains, that is, the Dancoff correction. Introduction of this correction solves immediately the case of macroscopically homogeneous assemblies. The result can be expressed in terms of “shielded” cross sections for the lumped absorber. Utilization of this concept permits also the treatment of additional macroscopic heterogeneities. Existing calculational methods can be employed if the macroscopic heterogeneities are treated with the help of the equivalence relations, and this procedure permits an adequate comparison between the grain structured and homogeneous compounds. Numerical examples are given in Section IV. The average shielding is nearly linear in the grain size. For grains of ThO2 in a graphite matrix, the reduction is about 15% for grains of 0.06 cm diam. On the other hand, the temperature derivative of the resonance integral is increased slightly, particularly at higher temperatures. One can, therefore, either maintain the Doppler coefficient of reactivity with a reduced resonance absorption or increase the Doppler coefficient for the same resonance absorption.