ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
William J. Walsh, Frederick G. Hammitt
Nuclear Science and Engineering | Volume 14 | Number 3 | November 1962 | Pages 217-223
doi.org/10.13182/NSE62-A26209
Articles are hosted by Taylor and Francis Online.
A radiotracer technique has been developed for the continuous measurement of cavitation damage in a closed-loop venturi facility and used to determine the damage rate of type 302 stainless steel in a cavitation field as a function of time. The size of particles removed from the test specimens was measured using a radiotracer sieving method. It is believed that these techniques have broad application in the field of cavitation and erosion studies. The measurements obtained are unique in providing an accurate damage rate measurement as a function of time for the initial stages of damage, as well as yielding an indication of particle size. The wear rates measured ranged from 0.15 mg/hr to 0.001 mg/hr and the particle diameters were predominantly between 0.5 and 3 mils.