ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Koichi Hata, Masahiro Shiotsu, Nobuaki Noda
Nuclear Science and Engineering | Volume 154 | Number 1 | September 2006 | Pages 94-109
Technical Note | doi.org/10.13182/NSE06-A2620
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) of subcooled water flow boiling for a high length/diameter (L/d) region is systematically measured for the flow velocities (u = 6.93 to 13.32 m/s), the outlet subcoolings (Tsub,out = 12.5 to 113 K), the inlet subcoolings (Tsub,in = 45 to 148.7 K), the outlet pressure (Pout = 773.50 to 861.12 kPa), and the inlet pressure (Pin = 796.16 to 920.07 kPa). Type 304 stainless steel tubes of inner diameter (d = 2 mm) and heated lengths (L = 21.5, 79.45, and 149.7 mm) with L/d = 10.75, 39.73, and 74.85 are used. The CHF correlation against outlet subcooling including the effect of L/d already presented by the authors describes the CHF obtained in this work within a 15% difference. However, the correlation against inlet subcooling also presented by the authors in the same papers needs a small modification to describe the CHF obtained in this work for a high L/d range. The modified correlation describes not only the experimental data for L/d up to 75 on the 2-mm tube but also the CHF for the same range of L/d on larger diameter tubes predicted by the correlation against outlet subcooling within a 15% difference.