ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Koichi Hata, Masahiro Shiotsu, Nobuaki Noda
Nuclear Science and Engineering | Volume 154 | Number 1 | September 2006 | Pages 94-109
Technical Note | doi.org/10.13182/NSE06-A2620
Articles are hosted by Taylor and Francis Online.
The critical heat flux (CHF) of subcooled water flow boiling for a high length/diameter (L/d) region is systematically measured for the flow velocities (u = 6.93 to 13.32 m/s), the outlet subcoolings (Tsub,out = 12.5 to 113 K), the inlet subcoolings (Tsub,in = 45 to 148.7 K), the outlet pressure (Pout = 773.50 to 861.12 kPa), and the inlet pressure (Pin = 796.16 to 920.07 kPa). Type 304 stainless steel tubes of inner diameter (d = 2 mm) and heated lengths (L = 21.5, 79.45, and 149.7 mm) with L/d = 10.75, 39.73, and 74.85 are used. The CHF correlation against outlet subcooling including the effect of L/d already presented by the authors describes the CHF obtained in this work within a 15% difference. However, the correlation against inlet subcooling also presented by the authors in the same papers needs a small modification to describe the CHF obtained in this work for a high L/d range. The modified correlation describes not only the experimental data for L/d up to 75 on the 2-mm tube but also the CHF for the same range of L/d on larger diameter tubes predicted by the correlation against outlet subcooling within a 15% difference.