ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
WILLIAM R. FAUST, ARLO D. ANDERSON
Nuclear Science and Engineering | Volume 14 | Number 1 | September 1962 | Pages 17-21
Technical Paper | doi.org/10.13182/NSE62-A26195
Articles are hosted by Taylor and Francis Online.
An approximate solution is obtained to the three-dimensional equation of transport for a point source radiating along the Z-axis. The radiation is separated into scattered and unscattered components, and the transport equation for the scattered radiation is derived. The appropriate solution for the scattered radiation is obtained by expanding the intensity in tesseral harmonics and solving the resulting equations for the amplitude of each harmonic. Some numerical results are presented to illustrate the behavior of the solution at great depths of penetration.