ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
D. E. Parks, J. R. Beyster, N. F. Wikner
Nuclear Science and Engineering | Volume 13 | Number 4 | August 1962 | Pages 306-324
Technical Paper | doi.org/10.13182/NSE62-A26173
Articles are hosted by Taylor and Francis Online.
A pulsed, high-current, electron linear accelerator is used to excite thermal-neutron spectra in a graphite assembly. The steady-state energy spectra of neutrons are measured at several temperatures by pulsed-beam time-of-flight techniques. We compare the measured spectra with theoretical predictions which use free- and bound-carbon scattering kernels. The scattering kernel for carbon bound in graphite is obtained through a realistic treatment of the neutron-phonon interactions. With this kernel, theoretical calculations of spectra agree extremely well with the experimental results. Predictions derived from a scattering law in which the carbon atoms are treated as free differ markedly from the measured spectra, even up to a temperature of 810°K. Additional calculations show that the effects of chemical binding are significant in problems of reactor design physics.