ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
D. E. Parks, J. R. Beyster, N. F. Wikner
Nuclear Science and Engineering | Volume 13 | Number 4 | August 1962 | Pages 306-324
Technical Paper | doi.org/10.13182/NSE62-A26173
Articles are hosted by Taylor and Francis Online.
A pulsed, high-current, electron linear accelerator is used to excite thermal-neutron spectra in a graphite assembly. The steady-state energy spectra of neutrons are measured at several temperatures by pulsed-beam time-of-flight techniques. We compare the measured spectra with theoretical predictions which use free- and bound-carbon scattering kernels. The scattering kernel for carbon bound in graphite is obtained through a realistic treatment of the neutron-phonon interactions. With this kernel, theoretical calculations of spectra agree extremely well with the experimental results. Predictions derived from a scattering law in which the carbon atoms are treated as free differ markedly from the measured spectra, even up to a temperature of 810°K. Additional calculations show that the effects of chemical binding are significant in problems of reactor design physics.