ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
D. E. Parks, J. R. Beyster, N. F. Wikner
Nuclear Science and Engineering | Volume 13 | Number 4 | August 1962 | Pages 306-324
Technical Paper | doi.org/10.13182/NSE62-A26173
Articles are hosted by Taylor and Francis Online.
A pulsed, high-current, electron linear accelerator is used to excite thermal-neutron spectra in a graphite assembly. The steady-state energy spectra of neutrons are measured at several temperatures by pulsed-beam time-of-flight techniques. We compare the measured spectra with theoretical predictions which use free- and bound-carbon scattering kernels. The scattering kernel for carbon bound in graphite is obtained through a realistic treatment of the neutron-phonon interactions. With this kernel, theoretical calculations of spectra agree extremely well with the experimental results. Predictions derived from a scattering law in which the carbon atoms are treated as free differ markedly from the measured spectra, even up to a temperature of 810°K. Additional calculations show that the effects of chemical binding are significant in problems of reactor design physics.