ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. N. Purohit, A. K. Rajagopal
Nuclear Science and Engineering | Volume 13 | Number 3 | July 1962 | Pages 250-260
Technical Paper | doi.org/10.13182/NSE62-A26160
Articles are hosted by Taylor and Francis Online.
A general mathematical formalism for the energy transfer moments and their associated integrals, useful in the study of neutron thermalization, is presented. This formalism has been employed to obtain these quantities for the “general Doppler approximation” case, which represents a large number of approximations that belong to the Doppler class. An exact formula for M2 (the second energy transfer moment weighted by the Maxwellian distribution) is given in terms of binding parameters for the general Doppler case. A new, useful Doppler approximation, which satisfies the Detailed Balance theorem and is based upon the Debye-Waller factor and the specific heat integral, is also formulated. A comparative study has been undertaken of this and three other previously known Doppler cases (the monatomic gas model, the effective temperature, and the Krieger-Nelkin approximations for rotating molecules) in terms of the validity of the Detailed Balance theorem and the asymptotic scattering behavior. Numerical results based upon the Debye frequency distribution of vibrational modes in the Doppler approximation are presented.