ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. D. Krumbein, J. H. Ray
Nuclear Science and Engineering | Volume 13 | Number 2 | June 1962 | Pages 166-170
Technical Paper | doi.org/10.13182/NSE62-A26145
Articles are hosted by Taylor and Francis Online.
The effect of control rod movement in a fast reactor has been calculated directly by solving a series of two-dimensional multigroup problems and indirectly by using a set of danger coefficients derived from one-dimensional calculations. The values of reactivity insertion calculated by the two methods for complete safety rod withdrawal agree within three percent. The shape of a curve of relative reactivity insertion vs. rod withdrawal distance is also predicted, with good agreement between the two methods. Differences between the two predictions are within three percent of the maximum value. Comparison of these predictions with a set of normalized experimental values shows agreement within four percent of the maximum value.