ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. T. Marti, J. P. Schneeberger
Nuclear Science and Engineering | Volume 13 | Number 1 | May 1962 | Pages 1-5
Technical Paper | doi.org/10.13182/NSE62-A26120
Articles are hosted by Taylor and Francis Online.
A critical system consisting of a regular infinite array of cylindrical channels of any cross section in a homogeneous multiplying medium is divided into equivalent cells of finite height. For such a cell two-group diffusion theory is applied with additional terms for the loss and gain of neutrons by the channels. The resulting integral-differential equations are solved with sufficient accuracy by the perturbation method, giving the reactivity loss due to the channels. With the method proposed the neutron leakage at the ends of the channels is included and deviations from the original unperturbed flux of the reactor without channels are taken into account. The results are compared with calculations based on the usual assumption of unperturbed flux, using the Behrens formula to compute the diffusion lengths. It is shown that reactivity calculations are also possible for arrays of finite extent, assuming separability of the flux in an axial and a radial part.