ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
C. B. Mills, G. I. Bell
Nuclear Science and Engineering | Volume 12 | Number 4 | April 1962 | Pages 469-473
Technical Paper | doi.org/10.13182/NSE62-A26093
Articles are hosted by Taylor and Francis Online.
In this paper we present calculated critical masses of homogeneous water-moderated assemblies containing low enrichment uranium. The calculations were made using the multigroup DSN code with eighteen energy groups. Effective absorption cross sections for U238 were computed with the “infinite mass” and “narrow resonance” approximations. The calculations have been compared with various experiments and rather good agreement was found. The results are presented as a parametric survey for U235/U atom ratios from 0.014 to 0.300 and for all H/U235 ratios for which criticality is possible. The decrease in critical radius with an infinite water reflector is also shown. We find that a bare homogeneous system with U235/U < 0.010 cannot be made critical at any H/U235 ratio.