ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Hardy, Jr., G. G. Smith, J. A. Mitchell, D. Klein
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 301-308
Technical Paper | doi.org/10.13182/NSE62-A26071
Articles are hosted by Taylor and Francis Online.
The Dancoff correction factor (1 − C) for U238 resonance neutron capture was measured for cylindrical, 0.98 cm diameter fuel rods at lattice pitches of 1.81 cm and 1.44 cm. The rods were 1.3% U235, arranged in a hexagonal, H2O-moderated lattice. Measurements were done for three fuel materials: uranium metal, UO2 (density 10.5 gm/cm3), and UO2 (density 7.5 gm/cm3) according to the following method. The ratio of U238 epicadmium neutron capture per atom at rod surface to that at rod center, S/V, was measured, for each fuel composition, at both lattice pitches and in an isolated rod (i.e., no Dancoff interaction). The quantity R ≡ [(S − V)/V]lattice/[(S − V)/V]isolated rod was, within experimental error, the same for all three fuel materials at each lattice pitch. Furthermore, within experimental error, R was found to be equal to (1 − C), calculated at each lattice pitch from Dancoff's expression. This agreement was expected from an analysis of the experiment in terms of a current model of resonance capture which indicated that R equals (1 − C) multiplied by two factors: one accounting for lattice mutual shielding of capture at rod center, the other accounting for the effect on S/V of the resonance flux lethargy tilt (due to loss of neutrons by resonance capture). Approximate calculations of these two effects showed that each perturbs R by about 10% in the worst case. The effects oppose each other so that very closely R = 1 − C.