ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
J. Hardy, Jr., G. G. Smith, J. A. Mitchell, D. Klein
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 301-308
Technical Paper | doi.org/10.13182/NSE62-A26071
Articles are hosted by Taylor and Francis Online.
The Dancoff correction factor (1 − C) for U238 resonance neutron capture was measured for cylindrical, 0.98 cm diameter fuel rods at lattice pitches of 1.81 cm and 1.44 cm. The rods were 1.3% U235, arranged in a hexagonal, H2O-moderated lattice. Measurements were done for three fuel materials: uranium metal, UO2 (density 10.5 gm/cm3), and UO2 (density 7.5 gm/cm3) according to the following method. The ratio of U238 epicadmium neutron capture per atom at rod surface to that at rod center, S/V, was measured, for each fuel composition, at both lattice pitches and in an isolated rod (i.e., no Dancoff interaction). The quantity R ≡ [(S − V)/V]lattice/[(S − V)/V]isolated rod was, within experimental error, the same for all three fuel materials at each lattice pitch. Furthermore, within experimental error, R was found to be equal to (1 − C), calculated at each lattice pitch from Dancoff's expression. This agreement was expected from an analysis of the experiment in terms of a current model of resonance capture which indicated that R equals (1 − C) multiplied by two factors: one accounting for lattice mutual shielding of capture at rod center, the other accounting for the effect on S/V of the resonance flux lethargy tilt (due to loss of neutrons by resonance capture). Approximate calculations of these two effects showed that each perturbs R by about 10% in the worst case. The effects oppose each other so that very closely R = 1 − C.