ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
D. H. Jones, R. P. Christman
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 276-284
Technical Paper | doi.org/10.13182/NSE62-A26068
Articles are hosted by Taylor and Francis Online.
The first Shippingport seed-blanket core was operated for 5530 equivalent full power hours at equilibrium xenon and samarium conditions. The comparison of physics measurements and calculations presented are those applicable to the first core containing the initial seed material. A three-dimensional diffusion theory depletion analysis indicates that this calculational model describes with reasonable accuracy the directly observed and inferred reactor parameters examined over core lifetime. The reactor parameters compared include: criticality, reactivity lifetime, xenon transient behavior, temperature coefficients, and blanket power fraction. While the primary emphasis is on the three-dimensional calculational and experimental comparisons, the results of one and two-dimensional diffusion theory depletion calculations are included to indicate their relative merit. The results indicate that such reactor parameters as excess reactivity, temperature coefficients, and blanket power fraction, may be estimated to within approximately the same accuracy by one and two-dimensional depletion models as by this particular three-dimensional model. This conclusion must be qualified by noting the crudeness employed in the three-dimensional depletion model.