ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. E. MacPherson, Jr., H. D. Stuart
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 225-233
Technical Paper | doi.org/10.13182/NSE62-A26061
Articles are hosted by Taylor and Francis Online.
Gas-cooled reactor systems can benefit from the use of internal metallic-foil insulations which take advantage of the relatively low thermal conductivity of the coolant gas itself. Tests have shown that, for design purposes, Nusselt, Grashof, and Prandtl number correlations for vertical gas spaces form a good basis for finding optimum foil spacing and for approximating insulation performance. Tests were conducted chiefly on a spirally wrapped foil arrangement in which in. spacing between adjacent foil turns was maintained by strips of corrugated sheet metal 1 in. in width. Results from this arrangement in an atmosphere of helium have shown gross effective thermal conductivity values to be approximately 150% of the values for the gas itself at pressures below 200 psia. From 200 psia to 1000 psia, conductivity increases with pressure to values approximately twice those for the gas itself. For the specific geometry tested effective conductivity was shown to be a function of mean insulation temperature, gas pressure, temperature gradient across the insulant, and insulation thickness.