ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Frank B. Estabrook
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 43-47
Technical Paper | doi.org/10.13182/NSE61-A25982
Articles are hosted by Taylor and Francis Online.
A multigroup diffusion theory is formulated for heterogeneous reactors having periodic arrays of line discontinuities. These discontinuities are idealized cylindrical internal boundaries of an otherwise homogeneous moderating medium, and appropriate mixed-group or multiplying boundary conditions at such boundaries allow Floquet solutions to be found for the neutron fluxes in the moderator. Real superpositions of such Floquet solutions can then give the physical fluxes in finite reactors. The requirement that a Floquet solution in the moderator have the proper thermal flux behavior at a cylindrical internal boundary, to match the thermal flux actually inside a fuel rod, leads to a “criticality” condition, the solutions of which give the spectrum of allowed Floquet solutions. For each of these a relation between material bucklings Bx2, By2, and Bz2 is obtained which is, in general, anisotropic.