ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
J. Ligou
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 26-38
Technical Paper | doi.org/10.13182/NSE61-A25980
Articles are hosted by Taylor and Francis Online.
This paper describes an extension of the method of Nordheim-Scalettar to the case of rods partially inserted in a bare reactor. In this study, the axial flux harmonics are introduced. It is assumed that the extrapolation distances of the rods for thermal neutrons still have the same value whatever their insertion length may be. This extrapolation distance can be calculated especially from data relative to rods of infinite length. Calculation methods for the determination of the efficiency of rod assemblies and the distribution of thermal neutron flux are described. It should be noted that the determination of the flux distribution may require the use of many more harmonics than the determination of rod efficiency, since the results converge more rapidly in the latter case. Significant examples are given. The calculation method has been programmed to be used with a BULL Gamma AET Computer.