ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
J. Ligou
Nuclear Science and Engineering | Volume 11 | Number 1 | September 1961 | Pages 26-38
Technical Paper | doi.org/10.13182/NSE61-A25980
Articles are hosted by Taylor and Francis Online.
This paper describes an extension of the method of Nordheim-Scalettar to the case of rods partially inserted in a bare reactor. In this study, the axial flux harmonics are introduced. It is assumed that the extrapolation distances of the rods for thermal neutrons still have the same value whatever their insertion length may be. This extrapolation distance can be calculated especially from data relative to rods of infinite length. Calculation methods for the determination of the efficiency of rod assemblies and the distribution of thermal neutron flux are described. It should be noted that the determination of the flux distribution may require the use of many more harmonics than the determination of rod efficiency, since the results converge more rapidly in the latter case. Significant examples are given. The calculation method has been programmed to be used with a BULL Gamma AET Computer.