ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Elias P. Gyftopoulos
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 254-268
Technical Paper | doi.org/10.13182/NSE61-A25969
Articles are hosted by Taylor and Francis Online.
Some basic theorems of the geometric theory of differential equations are reviewed, without proofs, in an attempt to clarify: (a) what relationship exists between the general solution of a set of nonlinear differential equations and the solution of its linear approximation and under what conditions this relationship can be used; and (b) how the geometric theory can be used to find properties of boundedness, stability, and periodicity of the solutions of nonlinear differential systems. These theorems are illustrated by means of two-third order examples. The first is the xenon controlled reactor and the second a two-region reactor with two temperature coefficients of reactivity. It is shown without involved computations or any approximations that: (a) Xenon controlled reactor—when the reactivity controlled by xenon is smaller than the prompt xenon yield, the reactor power is always bounded but periodic oscillations may arise. When the reactivity controlled by xenon is greater than the prompt xenon yield the reactor power is unbounded; (b) Two-region reactor—this reactor does not admit periodic solutions. When the temperature coeffi.cients are of opposite sign, conditions are derived for the reactor power to be bounded.