ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
Leo F. Epstein
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 247-253
Technical Paper | doi.org/10.13182/NSE61-A25968
Articles are hosted by Taylor and Francis Online.
The fast, potentially hazardous chemical reaction between a metal and water can occur in a nuclear reactor only above the melting point of the metal, Tm. There is a critical temperature θ > Tm, at which the process changes over from the slow corrosion-like reaction to one which proceeds with explosive speed and violence. For the alkali metals, θ is only slightly greater than Tm. The critical temperature θ has been experimentally determined for three high melting point metals, Al, Zr, and U; and it is shown that θ is approximately equal to the temperature at which the metal vapor pressure is 0.15 mm for these cases. This relation suggests that the initiation of the violent metal-water reaction for refractory metals may be a vapor phase phenomenon. On the basis of this hypothesis, and the empirical correlations developed, predictions of the value of θ are presented for a number of other metals for which experimental data are not presently available.