ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Leo F. Epstein
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 247-253
Technical Paper | doi.org/10.13182/NSE61-A25968
Articles are hosted by Taylor and Francis Online.
The fast, potentially hazardous chemical reaction between a metal and water can occur in a nuclear reactor only above the melting point of the metal, Tm. There is a critical temperature θ > Tm, at which the process changes over from the slow corrosion-like reaction to one which proceeds with explosive speed and violence. For the alkali metals, θ is only slightly greater than Tm. The critical temperature θ has been experimentally determined for three high melting point metals, Al, Zr, and U; and it is shown that θ is approximately equal to the temperature at which the metal vapor pressure is 0.15 mm for these cases. This relation suggests that the initiation of the violent metal-water reaction for refractory metals may be a vapor phase phenomenon. On the basis of this hypothesis, and the empirical correlations developed, predictions of the value of θ are presented for a number of other metals for which experimental data are not presently available.