ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. P. Calame, F. D. Federighi
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 190-201
Technical Paper | doi.org/10.13182/NSE61-A25958
Articles are hosted by Taylor and Francis Online.
Knowledge of the spatially dependent thermal spectrum near an interface between different media is important for many reactor calculations. The Kantorovich variational method is utilized to solve the equation where the subscript n denotes the nth spatial region. A functional, J, of Φ(E, ) and of Φ+(E, ), is found such that the solutions to the equation and its adjoint make J stationary. Trial functions for Φ and Φ+ are employed which are linear combinations of the infinite medium spectra and adjoints, respectively, of a hard and a soft region. The constants of combination are undetermined functions of . These trial functions are inserted into J and the energy integrations performed. When the resulting expression is made stationary with respect to arbitrary variations of the adjoint constants of combination, there results in the nth region a set of two coupled differential equations for the flux constants of combination. The equations are solved simultaneously, yielding the energy spectrum as a function of position. The spectrum is used to obtain activation rates, and the rates are compared to experiments. The agreement is excellent. The method, that of overlapping groups, appears to be a promising one for the solution of the thermal space energy problem in more complex reactor calculations.