ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. P. Calame, F. D. Federighi
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 190-201
Technical Paper | doi.org/10.13182/NSE61-A25958
Articles are hosted by Taylor and Francis Online.
Knowledge of the spatially dependent thermal spectrum near an interface between different media is important for many reactor calculations. The Kantorovich variational method is utilized to solve the equation where the subscript n denotes the nth spatial region. A functional, J, of Φ(E, ) and of Φ+(E, ), is found such that the solutions to the equation and its adjoint make J stationary. Trial functions for Φ and Φ+ are employed which are linear combinations of the infinite medium spectra and adjoints, respectively, of a hard and a soft region. The constants of combination are undetermined functions of . These trial functions are inserted into J and the energy integrations performed. When the resulting expression is made stationary with respect to arbitrary variations of the adjoint constants of combination, there results in the nth region a set of two coupled differential equations for the flux constants of combination. The equations are solved simultaneously, yielding the energy spectrum as a function of position. The spectrum is used to obtain activation rates, and the rates are compared to experiments. The agreement is excellent. The method, that of overlapping groups, appears to be a promising one for the solution of the thermal space energy problem in more complex reactor calculations.