ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Donald E. Parks
Nuclear Science and Engineering | Volume 9 | Number 4 | April 1961 | Pages 430-441
Technical Paper | doi.org/10.13182/NSE61-A25907
Articles are hosted by Taylor and Francis Online.
The principal result of the work reported in this paper is a first-order differential equation for the neutron spectrum in an energy region where the effects of chemical binding are significant but not dominant. Solutions of the differential equation provide accurate results for the spectrum in the cases of moderation by hydrogen, as well as by the heavier moderators, such as beryllium and graphite. In the derivation of the results, no restrictions are made concerning the nature of the motions of the moderator atoms. Interference effects in the neutron scattering are, however, neglected. The integral properties of the scattering kernel, which are found to influence the spectrum significantly, are calculated by means of the short-collision-time approximation, first introduced by Wick to compute the effects of chemical binding on slow neutron-scattering cross sections. Finally, for heavy moderators the representation of the energy-transfer properties of the moderator in terms of a first-order differential operator are combined with the P1 approximation to give a useful description of the spatially dependent spectrum.