ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
John A. De Mastry, Frederic R. Shober, Ronald F. Dickerson
Nuclear Science and Engineering | Volume 9 | Number 3 | March 1961 | Pages 299-304
Technical Paper | doi.org/10.13182/NSE61-A25880
Articles are hosted by Taylor and Francis Online.
An alloy containing niobioum-20 w/o uranium has been developed for reactor fuel applications. The fabrication characteristics, mechanical properties, and corrosion behavior in air, CO2, NaK, water, and steam were studied. After consumable arc melting, the alloy was successfully forged at 1370°C (2500°F) and rolled at 980°C (1800°F) to sheet. Representative specimens of this alloy showed onlv slight reductions in hardness up to 900°C (1650°F). The 0.2% offset yield strength was 93,000 psi at 24°C (75°F) and 71,000 psi at 870°C (1600°F). At a stress of 63,000 psi at 870°C (1600°F), 200 hr were required to cause rupture. The corrosion life of niobium-20 w/o uranium was superior to that of unalloyed niobium in 300°C (572°F) air and in CO2 at 316°C (600°F). In 1000 hr of exposure to 316°C (600°F) water, this alloy exhibited corrosion rates only two or three (0.003 mg/cm2/hr) times greater than that of Zircaloy-2 (0.001 mg/cm2/hr). This alloy appears to be compatible with NaK at 870°C (1600°F.)