ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. T. Jacobs, J. A. Merrill
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 480-496
Technical Paper | doi.org/10.13182/NSE60-A25834
Articles are hosted by Taylor and Francis Online.
The comparative correlations of this report thoroughly demonstrate that significantly more precise equations for calculating burnout heat flux can be obtained by following the proposed “system-describing” concept, that if the independent, system-describing variables of a system are known, the burnout heat flux can be predicted. With this concept, the independent variable of inlet temperature has been used rather than the dependent variable of outlet subcooling or enthalpy. The same statistical (regression analysis) method of correlation was used for burnout data from several sources with both inlet temperature and outlet enthalpy so that the consistently better predictions using inlet temperature would not be attributed to using a different method of correlation. Due to the fact that Reactor technology and design no longer allow the engineer safety factor added upon safety factor, a decided advantage of the regression analysis correlation is that it is possible to calculate the statistical uncertainty of the predicted burnout heat flux.