ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Akitoshi Hotta, Hiroshi Shirai, Shinya Mizokami
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 292-305
Technical Paper | doi.org/10.13182/NSE06-A2583
Articles are hosted by Taylor and Francis Online.
A postulated single control rod drop transient was calculated for a typical boiling water reactor plant taking into account effects of detailed void distributions in those bundles neighboring the withdrawn control blade. Time-dependent pin power distributions were reconstructed by the plant simulator TRAC/BF1-ENTRÉE and were exported to the subchannel code NASCA.Macroscopic cross-section libraries based on flat and distorted void distributions were allocated in accordance with fuel location in a simplified two-way coupling method. Exposure trends of bundle neutronic properties were compared between two void distributions. Although the infinite multiplication factor was not influenced, the radial peaking factor increased significantly because of the void distortion caused by pin-by-pin exposure of fissile materials.The result with the combined cross sections was compared with those with the flat void cross sections. Application of the combined cross sections lowered the initial local peaking because of larger neutron leakage around the withdrawn control blade. The transient linear power density at the critical fuel rod increased more rapidly. A change in the fuel heat flux was attenuated because of the heat conduction delay. As a consequence of these effects, the peak cladding temperature became slightly lower than that of the flat void model.