ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. R. Spencer, J. R. Smith
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 393-399
Technical Paper | doi.org/10.13182/NSE60-A25819
Articles are hosted by Taylor and Francis Online.
Large anomalies have been observed in the Bragg beam produced by Be (101), Be (103), Be (100), and Be (0002) monochromators on the MTR crystal spectrometer. Instead of a smooth spectrum characteristic of a Maxwellian distribution of neutron velocities, many large dips were found. These dips appear to be caused by extinction of the beam due to Bragg reflection by planes in the crystal other than those supplying the Bragg beam to the spectrometer. Calculations of the angles at which such competition can be expected have resulted in the identification of the planes responsible for the principal dips. To establish that these anomalies are due to crystal properties, spectra produced by the (200), (220), and (240) planes of NaCl were also examined. Although a few extinction dips were observed, these were far smaller in number and amplitude than those found in Be, due to the simpler crystal structure and lower reflectivity of NaCl. These effects require careful consideration in high-accuracy experiments with the crystal spectrometer, particularly in the measurement of reactor spectra.